

Faculty of Engineering, Built Environment and Information Technology Fakulteit Ingenieurswese, Bou-omgewing en Inligtingtegnologie / Lefapha la Boetšenere, Tikologo ya Kago le Theknolotši ya Tshedimošo

Science & innovation Department: Science and Innovation REPUBLIC OF SOUTH AFRICA

MINERALS COUNCIL

Make today matter

Rocker Shovel Improvements

Research findings

Dr S Uludag, 9 Nov 2023

Introduction

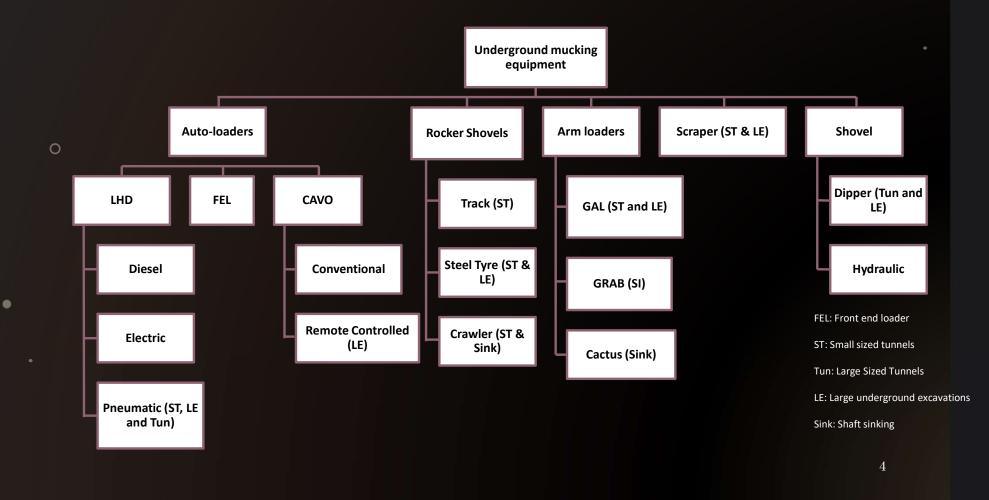
 \bigcirc

- Dr. S Uludag, University of Pretoria, Mining Engineering Department
- 30 years of mining engineering research and consultancy
- Lead Researcher on WP 6 amd WP5 as part of the LOCM
- PHD in System Dynamics field

Objective of the study

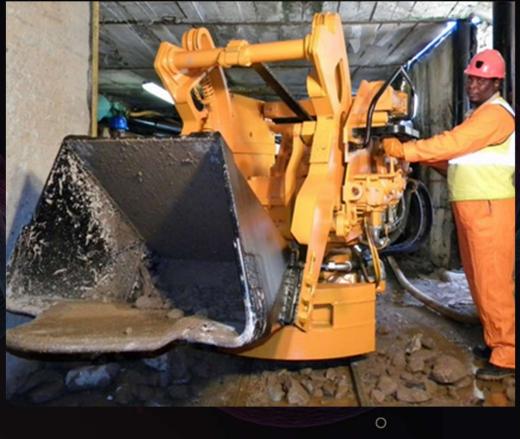
Establish the industry and requirements for the rocker shovel system optimization with potential proximity detection capability

• Cost effective and low maintenance


 Easy to operate and robust

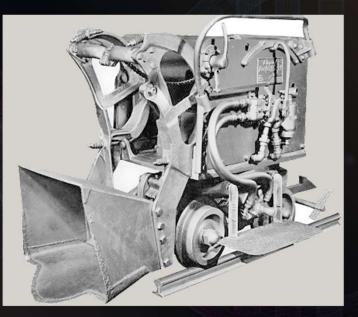
Sustainable

0


0

Types of Underground Mucking Equipment

Before 1946



° Rail Bound: Pneumatic (Boesman)

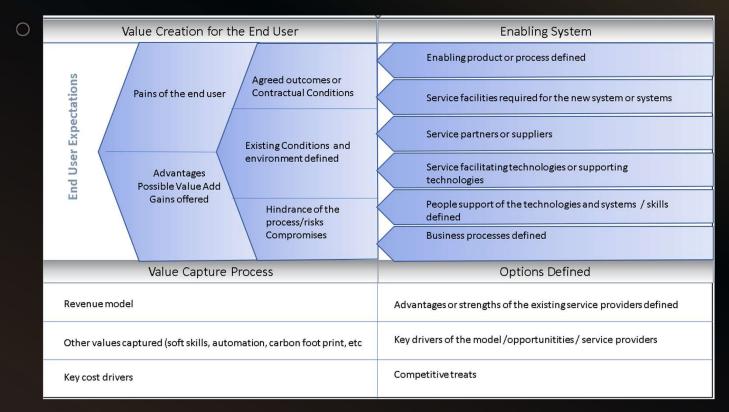
Machine Human Interaction: Pneumatic Rocker Shovel

- Requires Pneumatic power
- Manual
 - Limited ergonomics for the user
 - Violent and noisy
 - High risk of derailments

0

Rail Bound: Hydro-powered (HPE)

0


Never went into production due to lack of infrastructure or commitment by the mines to have a new infrastructure

Narrow Reef Development End Challenges

Cycle time

- Machine human interaction
- Coupling decoupling challenges
- Rail extension challenges
- Operational challenges
- Limitations with remote controllability
- Battery power challenges
- Hopper/Material car swopping challenges

Framework towards blueprint

Framework to create a blueprint model for an improved rocker shovel-based development-end cleaning system

Objectives of a Blueprint Model

- A blueprint model can aim to demonstrate a combination of conditions such as:
- □ Bench marking to identify internal opportunities for improvement:
 - Performance benchmarking
 - Practice benchmarking
 - Internal benchmarking
 - **External benchmarking**
- **Cost Constraints**
- □ Cost Reduction

Mine Parameters for the Blueprint

- All unit processes are to be captured per
- Tunnel specifications

Machine specifications

Performance Area	Units	ACTUAL	OPTIMAL	
				• Unit Processes are:
Advance per blast	m	2	2.5	• Onit i locesses are.
Advance Rate	m/month	42	58	D.::11:
Average Density	t/m^3	2.78	2.78	Drilling
Tons per blast	t/blast	79	91	
Tons per month	t/month	1663	2192	Blasting
ORD FACE CYCLE		Actual	Optimal	~
Travelling time (return)	min	43.3	34.3	 Support
Cleaning time	min	114.6	142.6	
Primary support time	min	13.5	28.0	 Cleaning or mucking
Face preparation time	min	55.0	50.0	
Drilling time	min	101.4	105.0	
Charging & Blasting time	min	199.2	55.2	
Face Cycle time required/blast	hrs	8.1	6.3	

BluePrint: Summary Specs per Machine Type

0

	Unit	Trident													Salzgitter Mzansi		HPE Epiroc Haggloader						Brokk
Machine model					21AC 21			268	and the second second	and the second second	630			CAVO 320	HL380U				Haggloader 7HR-1	Haggloader 10H	Haggloader 10HF	SQL Loader	Brokk 110
Operating mass	kg		1950	1950	3275 3	275 327	5 4840	4840	4840		4695	3150	4900	4100	0	4900			15300	21900	21900	7968.4	990
Machine length	mm	1910			2280 22						2845	2340	2720	2670	2670					12328	12803		1847
Machine width	mm	670	670							1400	1490	1050	1340	1570	1410	1350				3807	3807		1583
Machine height	mm	1240	1240	1240	1490 14	90 149	0 1635	5 1635	1635	1525	1510	1482	1550	1900	1850					4184	4184	2447	1147
Discharge height	mm	1240	1240	1240	1390 13	390 139	0 1820	1820			1900	1465	1550	1680	2750					4184	4184		0
Minimum roof height	mm				2350 23					3215	3225	2440	2855	2670	2750	2950			3288	4184	4184		1290
Clean-up width	mm	1880	1880	1880	2360 23	360 236	60 3160	3160	3160	0	0	2850	3160	0	3000	1600	1500	4000	3363	2088	3844	1934	0
Bucket capacity	m ^s	0.13	0.13	0.13	0.3	0.3 0	3 0.35	0.35	0.35	0.6	0.39	0.26	0.4	0.3	0.28	0.36	0.24	3	3.5	4	Ş	0.38	0.6
In-situ density	t/m [#]	3.5	3.5	3.5	3.5	3.5 3	5 3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
No. of hours per shift	hours	8	8	8	8	8	8 8	3 8	8	8	8	8	8	8	8	8	8 8	8	8	8	8	8	8
No. of working days per month	days	22	22	22		22 2	2 2		22		22	22	22	22	22	22			22	22			
No. of actual working hours per shift	hours	2.69	2.69	2.69	2.69 2	.69 2.6	59 2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69	2.69
Total allocated cleaning shift hours per month	hours	176	176	176	176	176 1	6 176	176	176	176	176	176	176	176	176	176	176	176	176	176	176	176	
Total actual cleaning hours per month	hours	59	59	59	59	59 5	i9 59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59	59
Average maintenance hours per shift	hours	0.5	0.5	0.5	0.5	0.5 0	.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	5 0.5	0.5	0.5	0.5	0.5	5 0.5	
Total shift maintenance hours per month	hours	11	11	11		11 1	1 1	l 11	11	11	11	11	11	11	11	11				11	11	l 11	-
Average breakdown downtime per shift	hours	0.5	0.5	0.5	0.5	0.5 0	.5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	6 0.5	0.5	0.5	0.5	0.5	5 0.5	0.5
Total shift breakdown downtime per shift	hours	11	11	11		11 1	1 1	l 11	. 11		11	11	11	11	11	. 11	l 11	. 11	. 11	11	11		
Total downtime per month	hours	22	22				2 2		22		22	22	22	22	22					22			
Machine availability	%	88%	88%		88% 8				88%		88%	88%	88%	88%	88%	88%			88%	88%	88%	88%	88%
Machine utilisation	%	34%	34%	34%	34% 3	4% 34	% 34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%
No. of machines per panel		1	1	1	1	1	1 1	1 1	1	. 1	1	1	1	1	1	. 1	. 1	1	1	1	1	. 1	1
No. of back-up machines per panel		0	0	0	0	0	0 () 0	0	0	0	0	0	0	0	0 0	0 0	0	0	0	0	0	0
Total number of drill rigs		1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	. 1	. 1	1	1	1	1	. 1	1
Fleet availability	%	88%	88%	88%		8% 88		88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%
Fleet utilisation	%	34%	34%	34%	34% 3	4% 34	% 34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%	34%

Performance per Machine Type

								_	_	_	_													
Machine application performance	Unit																							
Tunnel width	m	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Tunnel height	m	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8		3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8	3.8
Lateral/horizontal clearance	%	63%	63%	63%	79%	79%	79% 1	.05%	105%	105%	0%	0%	95%	105%	0%	100%	53%	50%	133%	112%	70%	128%	64%	0%
Vertical clearance	%	52%	52%	52%	62%	62%	62%	75%	75%	75%	85%	85%	64%	75%	70%	72%	78%	74%	85%	87%	110%	110%	64%	34%
Drilling efficiency	%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%	88%
Length of hole drilled	m	3.4	3.4	3.4		3.4					3.4		3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4	3.4		3.4	3.4
Average advance per development end per blast	m	2.99	2.99	2.99	2.99	2.99	2.99 2	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99	2.99
Development end tonnes per blast	t	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102	102
Hopper size (6t or 9t)	t	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Hopper fill factor	%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%	70%
No. of hoppers required	#	25	25	5 25	5 25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	25
HLGE to X/Cut	m	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170	170
Tramming hopper to X/Cut	hours	0.06	0.06	0.06	0.06	0.06	0.06 (0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06
Total waiting for tramming	hours	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Bucket fill factor	%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%	60%
Tonnes loaded per dig	t	0.234	0.23	0.234	0.54	0.54	0.54	0.63	0.63	0.63	1.08	0.702	0.468	0.72	0.54	0.504	0.648	0.432	0.09	0.105	0.12	0.15	0.792	1.08
No. of digs to load single hopper	#	26	26	26	5 12	12	12	10	10	10	6	9	13	9	12	12	10	14	67	58	50	40	8	6
Loading time per dig	min/dig	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Total digging time per development end per blast	hours	2.6	2.6	2.6	1.2	1.2	1.2	1	1	1	0.6	0.9	1.3	0.9	1.2	1.2	1	1.4	6.7	5.8	5	4	0.8	0.6
Total time digging and tramming per development end per blast	hours	4.1	4.1	4.1	2.7	2.7	2.7	2.5	2.5	2.5	2.1	2.4	2.8	2.4	2.7	2.7	2.5	2.9	8.2	7.3	6.5	5.5	2.3	2.1
No. of development ends cleaned per shift	Ħ	0.89	0.89	0.89	1.35	1.35	1.35	1.46	1.46	1.46	1.74	1.52	1.3	1.52	1.35	1.35	1.46	1.26	0.45	0.5	0.56	0.66	1.59	1.74
No. of machines per development end	#	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Blasting efficiency	%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%	90%
No. of actual blasts per month	#	20	20	20) 20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	20
Tonnes cleaned by single machine per month	t	1815.6	1816	1816	2754	2754	2754 2	2978	2978	2978	3549.6	3100.8	2652	3100.8	2754	2754	2978.4	2570.4	918	1020	1142.4	1346.4	3243.6	3549.6

Numbers are not real but for model validation randomly generated within the common mining layouts experienced in narrow reef mines

Discussions

- The OEM industry seems to have less appetite for developing new equipment on already mature mines that are not interested in replacing the existing machinery with more expensive ones due to challenges of
- Limited flexibility in existing mine layouts
- Confined spaces
- Limited infrastructure
- Costly exercise to replace with modern equipment, small tunnels are more economical
- Not proven to work on several trial attempts of various loader options
- Little experience or training
- Production demand versus development rate matching it is not a bottleneck
- No measurable output in terms of how safe and practical are the alternative solutions

Phase 2 LOCM WP2

- Identify service providers involved in validation (for Level 9 legislation requirements) of equipment or products for South African mining applications in narrow reef hard rock mines.
- Establish a database of the validated equipment or products or equipment or products which require testing for technology readiness.
- Establish an information-sharing framework to create linkages between sponsors, OEMs, and research institutions to collaboratively partake in developing, testing and funding selective products.
- Establish at least three agreements from OEMs to conduct equipment or product testing at the MMP test mine.

Thank you

- Sezer Uludag
- 012 420 3195
- sezer.uludag@up.ac.za