

Noise Control of Mining Machines

AMANDA AZMAN Au.D.

NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH

PITTSBURGH MINING RESEARCH DIVISION

The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the National Institute for Occupational Safety and Health. Mention of any company name, product, or software does not constitute endorsement by NIOSH.

Agenda

 \circ Miner noise overexposure

O Vibration damping-Continuous mining machine

- Vibration isolation-Roof bolting machine
- \odot Air flow optimization-Haul truck
- Increasing mass/thickness to reduce vibration-Longwall shearer
- \odot Sound insulation and sound absorption

Noise overexposure and hearing loss are "facts of life" for miners

NIOSH Pittsburgh Mining Research Division: Health Hazards Prevention Branch

Develop noise control technology

Technical support of MSHA and the mining industry

Educate the mining industry

Documentation of the effectiveness of controls and their implementation – scientific evidence

Facilitate the commercialization of controls

PMRD Acoustic Test Chambers

Continuous Mining Machine- Vibration Damping noise controls

Acoustic Beamforming

Array positions with respect to the Continuous Miner

Acoustic Beamforming Results

Rear: 1600 Hz

Overhead: 1600 Hz

Developed Noise Controls

NOISE CONTROL OF LARGE MINING MACHINES – A AZMAN

Developed Noise Controls

NOISE CONTROL OF LARGE MINING MACHINES – A AZMAN

Effectiveness of Controls

Standard chain: 103 dB(A)

Coated chain: 99 dB(A)

Coating Wear

Sound Level Reduction Over Time

Roof Bolting Machine-vibration isolating noise controls

Noise generation from RBMs

Past NIOSH research has shown the drilling activity to produce the highest noise levels on the RBM, often exceeding 100 dB(A)

Operator overexposed during typical shift

The drill bit isolator reduces vibration transmitted to the drill steel and the chuck

Current NIOSH-developed noise control for RBM: 35-mm Drill Bit Isolator

Drill bit isolator

- Current design for drilling with 35-mm drill bits
- 3-5 dB reduction

Available from Kennametal

Necessary to develop and evaluate smaller size for drilling with 25-mm drill bits

Underground Haul Truck- air flow optimization controls

Noise Source Identification

- Testing done underground using Source Path Contribution analysis
- Focus on airborne noise since the operator is exposed not in an enclosed cab
- Primary sources thought to be engine exhaust, engine cooling fan, engine block radiation, engine intake, and ancillary equipment

SPC Analysis Measurements

NOISE CONTROL OF LARGE MINING MACHINES – A AZMAN

Engine Cooling Fan Primary Noise Source

Fan Noise Test Stand Developed

Selection of Best Fan and Operating Conditions for Reduced Noise

	Stock	New
Air flow (CFM)	16,400	16,400
Fan type	airfoil	sickle
Fan diameter (in)	30	32
Rotation speed (rpm)	2,450	2,100
Sound power (dBA)	116.1	113.5

Noise Control Retrofit Solution

NOISE CONTROL OF LARGE MINING MACHINES – A AZMAN

Evaluation in Field

- Resulted in a 9 dB reduction in the TWA
- More than tripled the time to reach the MSHA PEL
- Maintained adequate airflow

- Stock condition, or baseline
- New barrier material Duracote 5356
- 32" sickle fan and fan hub pulley ratio from 1:1 to 0.9:1

6

Longwall Mining System Overviewincreasing mass to reduce vibration

- Longwall systems generate sound levels from 93 to 105 dB(A)
- Two major noise sources are the shearer and the stageloader

Longwall Mining System Shearer

- Roughly 50% of the coal is mined using the longwall mining system
- \circ Over 305 m long
- Operators follow the course of the shearer along this length for each pass
- \odot Confined and highly reverberant space

Program of Control Development

Experimental Modal Analysis

Validate

Finite Element Model

Noise Control Solution – increase mass

One gusset per pedestal, for all the pedestals on the four vanes, is added

Eight ribs added to the face ring

The thickness of all the outer vane plates is increased

NOISE CONTROL OF LARGE MINING MACHINES - A AZMAN

Predicted Results

Sound insulation and Sound absorption

Off the shelf products available

Absorptive panels and curtains

Partial and complete cabs

Surround the sound source or the worker

Windows, doors, windshields

Operator booths Equipment enclosures

Conclusions

• Effective noise control solutions have been developed for large mining machines

Noise reductions of as much of 8 dB have been achieved

o A critical part of noise controls for large machines is identifying the source

Just as important as noise control effectiveness are other parameters including
Durability

Ability to retrofit

o Impact on production and serviceability

O Acceptance

Questions

Amanda Azman

Aazman@cdc.gov

412-386-6731

NOISE CONTROL OF LARGE MINING MACHINES – A AZMAN